Training HomePhotoelectricMachine SafetyVision SensorsIndicator LightsWireless
Banner HomeHelpiSelectGlossaryResources

All Q&As

Measuring Temperature with the T-GAGE

M-GAGE in Vehicle Detection Apps

QS30 Water Sensor

Photoelectrics in Tablet-Counting Apps

Color Mark Sensing

IP/NEMA Ratings for Sensors

Luminescence Sensors

Measuring Light Screens

Ultrasonics Basics

Photoelectrics Home > Q&As

Q&A: Ultrasonics Basics

Hello, I'm Brad.  Welcome to Banner Online Training Ask Brad
Product Specialist

Description: Ultrasonic sensors use electrical energy and a ceramic transducer to emit and receive mechanical energy in the form of sound waves. Sound waves are essentially pressure waves that travel through solids, liquids and gases and can be used in industrial applications to measure distance or detect the presence or absence of targets. In this Q&A, I will answer some common questions about the ultrasonic theory and terminology.

Q: What are ultrasonic sensors?
Ultrasonic sensors are industrial control devices that use sound waves above 20,000 Hz, beyond the range of human hearing, to measure and calculate distance from the sensor to a specified target object.

Q: How does an ultrasonic sensor work?
The ceramic transducer is the white element on the sensor noseA:
The sensor has a ceramic transducer that vibrates when electrical energy is applied to it. The vibrations compress and expand air molecules in waves from the sensor face to a target object. A transducer both transmits and receives sound. The ultrasonic sensor will measure distance by emitting a sound wave and then "listening" for a set period of time, allowing for the return echo of the sound wave bouncing off the target, before retransmitting.

Q: When would I use an ultrasonic?
Ultrasonics are great for sensing clear bottlesA:
Because ultrasonic sensors use sound rather than light for detection, they work in applications where photoelectric sensors may not. Ultrasonics are a great solution for clear object detection and for liquid level measurement, applications that photoelectrics struggle with because of target translucence. Target color and/or reflectivity don't affect ultrasonic sensors which can operate reliably in high-glare environments.

Q: So why wouldn't I just use an ultrasonic, instead of an optical sensor?
Ultrasonics definitely have advantages when sensing clear objects, liquid level or highly reflective or metallic surfaces. Ultrasonics also function well in wet environments where as an optical beam may refract off the water droplets. However, ultrasonics are susceptible to temperature fluctuations or wind. With optical sensors, you can also have a small spot size, fast response and in some instances, you can project a visible spot on a target to help with sensor alignment.

Q: How do ultrasonic sensors deal with noise and interference?
Any acoustic noise at the frequency to which the ultrasonic sensor is receptive, may interfere with that sensor's output. This includes high-pitched noises such as those created by a whistle, the hissing of relief valves, compressed air or pneumatic devices. You might also get acoustical crosstalk by locating two ultrasonics of the same frequency close together. Another kind of noise, electrical noise is not exclusive to ultrasonic sensors.

Q: What environmental conditions affect an ultrasonic sensor?
The speed of an ultrasonic sensor's sound waves are affected by temperature fluctuation. As temperature increases, the sound waves travel faster to and from the target. While the target may not have shifted, it will seem to the sensor that the target is closer.

Air currents due to pneumatic equipment or fans may also deflect or disturb the path of the ultrasonic wave. This could lead a sensor to fail to recognize the correct location of a target.


Q: Why do I need to let my ultrasonic sensor warm up before I operate it?
The ultrasonic sensor should not be configured or operated until it has had a chance to warm up. When a sensor is first powered up, the individual components heat up and also heat the surrounding space and components. This fluctuation in temperature from a cold start to the operating temperature is called "Warm-Up Drift." Until all components have stabilized at the correct operating temperature, the accuracy of your measurements may be affected.

Q: What is a dead zone?
A dead zone refers to the area directly in front of the transducer face where the sensor cannot reliably make measurements. This is due to a phenomenon called ringing. Ringing is the continued vibration of the transducer after the excitation pulse. The energy must dissipate before the transducer can listen for a return echo. Make sure to locate your target outside of the specified dead zone of you ultrasonic sensor.

Q: So, are ultrasonics slower than photoelectric sensors?
Yes. The speed of sound is considerably slower than the speed of light, therefore an ultrasonic sensor will, by its very nature, be slower than an optical sensor.

Q: What sorts of targets should I avoid when using an ultrasonic sensor?
S18U in semiconductor rack verificationA:
The best targets for use with an ultrasonic are large, flat, solid surfaces of materials such as metal, ceramic, glass or wood. Placement should always be perpendicular to the sensor. Soft or irregular surface targets, such as pellets, sawdust or foam should be avoided.

Q: What is the best way to detect randomly placed objects using an ultrasonic?
Teach the sensor the "background" as your good condition. By teaching a good ultrasonically reflective background surface as the good condition, any object getting between the sensor and the background will be detected, therefore causing the output to switch.

Related Links:
Learn more about Banner Ultrasonic Products here.

Download a color brochure on Ultrasonic sensors.


Contact Us:
Ask a sensor-related question.